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Abstract: We show that Clar’s theory of the aromatic sextet is a simple and powerful tool to predict the
stability, the π-electron distribution, the geometry, and the electronic/magnetic structure of graphene
nanoribbons with different hydrogen edge terminations. We use density functional theory to obtain the
equilibrium atomic positions, simulated scanning tunneling microscopy (STM) images, edge energies, band
gaps, and edge-induced strains of graphene ribbons that we analyze in terms of Clar formulas. On the
basis of their Clar representation, we propose a classification scheme for graphene ribbons that groups
configurations with similar bond length alternations, STM patterns, and Raman spectra. Our simulations
show how STM images and Raman spectra can be used to identify the type of edge termination.

Introduction

Since its first characterization in 2004,1 graphene has
developed into a major research topic of its own and, from the
beginning, its unique electron transport properties2-7 (for a
review, see ref 8) have propelled the hope for application in a
postsilicon generation of electronic devices.1,4 One of the big
advantages graphene has over other potential materials such as
carbon nanotubes (CNTs) is that it can be patterned with
lithography methods.4 In this context nanometer-sized graphene
ribbons come into focus. On one hand, they could serve as
conductive interconnects in integrated circuits9 and, on the other
hand, as channel materials in field effect transistors.10-12 To
achieve sufficient on-off ratios in semiconducting devices,
however, the electronic band gap has to be large enough and,
as a consequence, lateral dimensions below 10 nm are required,

since the band gap is inversely proportional to the width.11,13-17

At this scale, the edge chemistry and geometry determine the
electronic properties.18-20 For instance, single-hydrogen-
terminated zigzag ribbons are predicted to feature a spin-
polarized edge state whose order is ferromagnetic along the
ribbon and antiferromagnetic across the ribbon.21,22 Under high
external fields, this state could turn the zigzag ribbons into half-
metals, opening interesting perspectives for application in
spintronics.23,24 Magnetic ground states were also found for
other graphene nanostructures.25-29 In single-hydrogen-termi-
nated armchair ribbons, however, this phenomenon is absent.
Despite the broad range of production techniques for graphene
ribbons,10,11,17,30-41 real control over the edge geometry and
termination in them has not been achieved yet, nor has atomic
characterization. For other sp2-bonded materials such as poly-
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cyclic aromatic hydrocarbons (PAHs), Clar’s theory of the
aromatic sextet42 has proven to be an intuitive yet adequate
model for the edge-induced π-electron distribution43 and can
account for many properties of PAHs.44-46 It has also been
applied to graphene-related systems,46,47 to carbon nanotubes,48-50

and to ribbons51,52 to some extent.
In this article, we analyze a set of selected, hydrogen-

terminated graphene ribbons. We suggest a classification scheme
that groups ribbons which have similar representations according
to Clar’s theory. In an analysis of simulated scanning tunneling
microscopy (STM) images and relaxed density functional theory
(DFT) coordinates we show that the Clar formulas correctly
account for the π-electron distribution, bond lengths, and
hexagon areas. Furthermore, we demonstrate how magnetic edge
states can be explainedseven quantitativelyswith Clar’s theory.
Finally, we present calculations on the width dependence of
the electronic band gap, the edge energy, and the edge-induced
strain.

Considered Systems

The graphene ribbons analyzed in this study were the four
hydrogen-terminated edge configurations identified in ref 51 to
be the thermodynamically most stable ones: zz(1), ac(11),
zz(211), and ac(22) (see Figure 1). In addition to that, we
included also ribbons with double-hydrogenated zigzag edges:
zz(2). Note that for the zz(211) edge termination there are two
different ribbon configurations, denoted as zz(211) and zz(211)-
interlock, depending on the relative position of the double-
hydrogenated sites on each edge (second row in Figure 1). In
fact, there are also two different geometries for the ac(22)
ribbons. These were called ac(22)-mirror and ac(22)-inversion,

depending on whether the spatial arrangement of the hydrogen
atoms on the opposite edges is mirror or inversion symmetric
with respect to the center of the ribbon (third row in Figure 1).

In addition to the notation, Figure 1 shows the lattice constants
of the supercells, lcell, and the definition of the width index w,
i.e., the number of hexagons in the lateral direction, which we
used in this study to characterize the width of the ribbons.
Calculations were performed for width indices in the range of
w ) 1, ..., 13 (22) for zigzag (armchair) ribbons, translating
into widths from 4.3 to 30.7 Å between the outermost atoms.

Computational Methods

We performed first-principles calculations with the PWSCF code
of the Quantum-ESPRESSO package53 to investigate the atomic
coordinates, edge energies, band gaps, and edge-induced strains of
the graphene nanoribbons. Plane-wave basis functions, Vanderbilt
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Figure 1. Ribbon configurations considered in this study with their
corresponding names. Periodic boundary conditions were applied to a
supercell setup with length lcell, indicated by the bar above each structure.
Note that only the σ-bond network between the carbon atoms is shown.
Solid wedges represent bonds pointing out of the plane, toward the reader,
and dashed wedges represent bonds pointing into the plane, away from the
reader. The red numbers inscribed in the first two diagrams indicate how
we defined the width index w of the ribbons.

Figure 2. Clar representations, with implicit hydrogen atoms, of the C18H12

isomers used as test cases for the evaluation of the PBE functional:
naphthacene (1), benz[a]anthracene (2); chrysene (3); benzo[c]phenanthrene
(4); triphenylene (5).
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ultrasoft pseudopotentials,54 and the PBE generalized-gradient
approximation (GGA)55 as the exchange-correlation functional were
applied. For the armchair ribbons, the Brillouin zone integration
was done with a uniform grid of 12 k-points along the periodic
direction. For the zz(1) and zz(2) ribbons, 24 k-points were used,
and for the zz(211) and zz(211)-interlock ribbons, 8 k-points were
used. The cutoff energy for the wave functions was set to 30 Ry
and that for the charge to 300 Ry. In our supercell setup, vacuum
distances of 9.5 and 8.5 Å separated the ribbons in plane and
between planes. The lattice constant, lcell, along the ribbon was
optimized in a separate loop. The atomic positions in the cell were
allowed to relax until all the forces on the nuclear coordinates were
below a threshold of 0.1 mRy/bohr. With the optimized coordinates,
additional calculations were performed for the simulation of STM
images using norm-conserving pseudopotentials to avoid the wiggles
in the tails of the augmentation densities which are inherent in
ultrasoft pseudopotentials. For these calculations, the wave function
cutoff energy was set to 60 Ry, the cutoff for the charge to 240
Ry, the vacuum between the ribbons to 12.7 Å, and the vacuum
between planes to 10.6 Å. The Brillouin zone sampling consisted
of 60 k-points for the armchair ribbons, 102 k-points for the zz(1)
and zz(2) ribbons, and 34 k-points for the zz(211) and zz(211)-
interlock ribbons.

Simulated STM images were obtained using the Tersoff-Hamann
approximation.56,57 In this approach, the local tunneling current I
between sample and tip is proportional to the sum of the electron
density of orbitals in the interval [εF + eU, εF] for a negative and
[εF, εF + eU] for a positive bias voltage U, respectively:

Here, εF denotes the Fermi energy, defined as lying in the middle
between valence and conduction band if a gap is present, e stands
for the elementary charge (e > 0), f is the electron occupation
function, f(ε) ) 1 for ε e 0 and f(ε) ) 0 for ε > 0, εµ is the energy
of the state µ, and d is the sample-tip distance. We used a fixed
sample-tip distance of d ) 3 Å.

We recall that in the case of a negative bias voltage U the
electrons tunnel from occupied states of the sample to empty states
of the tip. Consequently, in STM measurements at negative bias
voltage the occupied states of the sample are probed, whereas the
empty states are probed at positive bias. In graphene ribbons, the
states near the Fermi energy belong to the π electrons.43 Therefore,
at small bias, the STM signal is dominated by these states and it
essentially reflects the distribution of the π electrons over the lattice.

To demonstrate the robustness of the DFT-PBE exchange-
correlation functional used in this study, we compared the PBE
energy differences among a set of small PAH molecules with
published values obtained with the hybrid B3LYP functional58,59

and with experimental differences in the enthalpy of formation.
The results are shown in Table 1. Note that the energies of these
PAH molecules, which are isomers of the molecular formula C18H12,
vary significantly. The reasons for this lie in the steric repulsion
between the hydrogen atoms and in different numbers of π
resonances, i.e., ways to arrange the π electrons among the bonds
of the molecules.46 The results obtained with the PBE functional
are very close to the values of the B3LYP calculations. Both DFT
results agree well with the experimental values in all cases except
for benz[a]anthracene 2. This could point to a possible problem in

the experimental determination of the enthalpy of formation in this
case. The good agreement between PBE and B3LYP results attests
to the employed functional being reliable for calculations on PAH
systems such as graphene nanoribbons.

Clar’s Theory of the Aromatic Sextet

In the structure model of PAHs according to Kekulé, the four
valence electrons of each carbon atom are arranged with
electrons of neighboring atoms, forming single, double, or triple
bonds. The electronic structure of a system is then the result of
a superposition of all possible Kekulé bond formulas. In
extension to the Kekulé structure model, Clar’s theory of the
aromatic sextet introduces the Clar sextet, a representation for
the delocalization of six π electrons due to the resonance of
two complementary, hexagonal Kekulé configurations with
alternating single and double bonds (Figure 3). According to
Clar’s rule,42 for a given molecule, the representation with a
maximum number of Clar sextets, called the Clar formula, is
the most representative one. The Clar formula characterizes best
the properties of PAHs such as the bond length alternations45

and the local density of π states,43 and it is more stable than
alternative bond configurations.62 This is because a Clar bond
configuration with n Clar sextets represents the resonance of 2n

Kekulé type bond formulas.63 Therefore, maximizing the number
of Clar sextets unifies a maximum number of resonant Kekulé
formulas in one single Clar representation. Note that, as the
bonds sticking out of a Clar sextet are formally single bonds,
two adjacent hexagons can never be Clar sextets at the same
time.

Graphene has three equivalent Clar formulas in each of which
every third carbon hexagon is a Clar sextet.47,51 In these Clar
formulas, all π electrons belong to a Clar sextet and no localized
double bonds are present (see Figure 4). Such systems that can
be represented without localized double bonds are called all-
benzenoid polycyclic aromatic hydrocarbons. They show a
particularly high stability, high melting point, and low chemical
reactivity.64 In each of the three Clar formulas of graphene, the
pattern of Clar sextets induces a (�3 × �3)R30° superstructure,
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I(x, y, z ) d, U) ∝ ∑
µ

|Ψµ(x, y, z ) d)|2[f(εF - εµ) -

f(εF + eU - εµ)] (1)

Table 1. Energy Differences (in eV) between the Test Molecules
Depicted in Figure 2 As Obtained with PBE and B3LYP
Functionals as Well as Experimental Differences in the Enthalpy of
Formationa

molecule PBE B3LYP/6-31G*60 exptl61

naphthacene (1) 0.40 0.44 0.40
benz[a]anthracene (2) 0.08 0.08 0.26
chrysene (3) 0.00 0.00 0.00
benzo[c]phenanthrene (4) 0.24 0.26 0.29
triphenylene (5) 0.03 0.03 0.02

a Chrysene was chosen as reference.

Figure 3. The Clar sextet represents the delocalization of six π electrons
resulting from the resonance of two Kekulé bond configurations with
alternating single and double bonds.
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i.e., a reconstruction with a unit cell that is rotated by 30° and
whose sides are scaled by a factor of �3 compared to the
primitive unit cell (Figure 4).

In PAHs and graphene nanoribbons, however, the presence
of edges can lead to a breakdown of the prototypical all-
benzenoid π-electron distribution of graphene.86 Under the
premise that all four valence electrons of the carbon atoms are
engaged in bonds with neighboring atoms and no dangling bonds
or free radicals are present, some edge configurations do not
allow the distribution of all π electrons into Clar sextets. In
general, the edges of graphene ribbons and PAHs impose a Clar
formula consisting of a mix of localized double bonds and Clar
sextets.

In this study, we define graphene ribbons as (pseudo)-all-
benzenoid if in the Clar formula of their unit cell the number
of isolated double bonds as a function of the width w is limited
by a constant. For example, the Clar formulas of the unit cells
of ac(11), zz(211), zz(211)-interlock, and ac(22) ribbons never
feature more than two double bonds, independent of the width
of the ribbons (see Figures 6-8). Note that in the limit of large
ribbons, the density of Clar sextets in these structures approaches
that of two-dimensional graphene. For ribbons in which the
number of double bonds in the Clar formula of their unit cell
increases with the width, we use the term nonbenzenoid.
Examples of nonbenzenoid ribbons are zz(1) and zz(2), as will
become apparent in Figure 11.

The Clar formula for a given molecule or a periodic cell of
a crystal is not necessarily unique. We thus further distinguish
the (pseudo)-all-benzenoid ribbons into the following three
subclasses according to the number of different equivalent Clar
formulas they possess:

(1) Ribbons having one, unique Clar formula (called class
1CF)

(2) Ribbons having exactly two Clar formulas (class 2CF)
(3) Ribbons having more than two Clar formulas (class nCF).

Note that the definitions (pseudo)-all-benzenoid and nonben-
zenoid apply to ribbons independent of their width, meaning
that all ribbons with a given edge configuration are either
(pseudo)-all-benzenoid or nonbenzenoid. In contrast to that, the
definition of the above subclasses of (pseudo)-all-benzenoid
ribbons is defined only for a specific width and may change for
different widths.

We want to emphasize that the affiliation of a ribbon
configuration to either the (pseudo)-all-benzenoid or the non-
benzenoid category is not determined by the edge geometrys
zigzag or armchairsalone. Even though in the present study
the class of nonbenzenoid ribbons was represented by zigzag
structures only, one can easily imagine armchair ribbons which
belong to this group. For example, the armchair configuration
with one of the edge sites being double-hydrogenated while the

other is single-hydrogenated, in our notation called ac(21), is
also nonbenzenoid.

Results

A. Geometry and Simulated STM Images. (a) Graphene.
Before we present the results for the ribbons, it is illustrative to
start with infinite two-dimensional graphene. The superposition
of the three equivalent Clar formulas of graphene, depicted in
Figure 4, leads to a uniform π-electron distribution over the
crystal with 2/3 π electrons per carbon-carbon bond and a
uniform bond order of 4/3. As a consequence, all bond lengths
and hexagon areas are expected to be equal. In Figure 5a,b, on
the basis of the relaxed DFT coordinates, the carbon-carbon
bonds and the hexagon areas are color-coded according to their
size. Obviously, all bond lengths and hexagon areas assume
the same values, 1.427 Å and 5.293 Å2, respectively, and no
deviations are present. Figure 5c shows simulated STM images
of graphene, obtained as absolute values of eq 1, confirming
the uniform distribution of the π electrons over the hexagonal
carbon lattice. The negative and positive bias STM images look
very much alike because of the symmetric band structure of
graphene around the Fermi energy.

(b) (Pseudo)-All-Benzenoid Ribbons. Among the configura-
tions considered here, the ac(11), ac(22), zz(211), and zz(211)-
interlock ribbons constitute the (pseudo)-all-benzenoid class.
While the zz(211)-interlock and zz(211) ribbons have exactly
one and two Clar formulas, respectively, for their unit cell,
independent of the width, the ac(11) and ac(22) ribbons change
in a cyclic way among the subclasses 1CF, 2CF, and nCF with
increasing width. In these cases, a discussion involving the width
index w introduced in Figure 1 is inevitable. Note that the two
smallest possible ac(22) ribbons with width indices w ) 1 and
w ) 2 are excluded from the discussion. They are too narrow
for even one Clar sextet to form, or in other words, they consist
of edges only and have no interior region at all.

1. Subclass 1CF: One Unique Clar Formula. The subclass
1CF is made up of ac(11) ribbons with a width index w ) 3n
+ 1, n being an integer, ac(22) ribbons with widths of w ) 3n,
and zz(211)-interlock ribbons of arbitrary width. They all have
only one unique Clar representation with maximal number of
Clar sextets for their unit cell, as shown in Figure 6.

a. Bond Lengths. The Clar formulas of subclass 1CF
configurations show a (�3 × �3)R30° superstructure of Clar
sextets, as in two-dimensional graphene. However, in contrast

Figure 4. The three equivalent Clar formulas of graphene. At the left, the
primitive unit cell of graphene is shown in blue and the unit cell of the
(�3 × �3)R30° superstructure is shown in red. Note that only a subsection
of the infinite graphene lattice is shown.

Figure 5. Bond lengths (a), hexagon areas (b), and simulated STM images
(c) of two-dimensional graphene. The scales in (a) and (b) show the
deviations from the values 1.427 Å and 5.293 Å2, respectively, in percent.
U denotes the bias voltage. *STM-ED stands for STM electron density.
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to the latter case, here the boundary conditions fix the positions
of the Clar sextets. As the sides of a Clar sextet have a bond
order of 3/2, one would expect the lattice geometries of the
subclass 1CF configurations to feature a pattern of hexagons
with smaller sides that are connected by longer bonds. The DFT
coordinates corroborate this hypothesis (first subfigures in Figure
6). Note that the scales for the bond lengths and the hexagon
areas in Figure 6 use a nonlinear partitioning. Their range is
limited to a bit more than (1% deviation from the graphene
values. The interesting parts of the bond length and hexagon
area alternations lie within these boundaries. However, at the
edges, bond length derivations of up to 6% can occur. In the
two armchair configurations ac(11) and ac(22), the bond length
alternations are clearly visible and are in accord with the Clar
formulas. Both structures show a pattern of hexagons mainly
consisting of dark red or black lines, corresponding to the Clar
sextets, and fine blue lines sticking out of them, representing
longer single bonds. For the zz(211)-interlock configuration,
however, the effect is rather weak but still visible in the interior
of the ribbon (Figure 6c).

b. Hexagon Areas. The Clar formulas also imply that the
hexagons corresponding to Clar sextets should have a slightly
smaller area than the surrounding ones, as all the sides of the
Clar sextets have bond order 3/2 whereas the non-Clar hexagons

are made up of three sides with bond order 3/2 and three sides
with bond order 1. The second subfigures in Figure 6 show that
the DFT coordinates support this. The hexagons corresponding
to Clar sextets in the Clar formula appear in brighter gray,
meaning they have an area smaller than those surrounding them.
Again, the pattern of bright hexagons is clearly visible in the
two armchair configurations, whereas it is less accentuated in
the zz(211)-interlock case but still appears toward the middle
of the ribbon.

c. Simulated STM Images. The Clar formulas of subclass
1CF structures indicate that the local density of occupied π states
should be higher in the hexagons corresponding to Clar sextets
than in the neighboring ones. The simulated STM images in
Figure 6 are in perfect agreement with this model. Hexagons
corresponding to Clar sextets appear as bright rings in simulated
STM images with negative bias, reflecting the high local density
of occupied π states in that area. The effect is clear enough in
all three configurations, and the ring pattern runs through the
whole width of the ribbons. In positive bias STM images, the
Clar sextets correspond to dark regions, reflecting the fact that
large parts of the π states in this area are occupied and therefore
the density of unoccupied states is low. In the bonds sticking
out of a Clar sextet, on the other hand, the density of unoccupied
states is high, as the corresponding electrons are engaged in

Figure 6. Graphene ribbons with one unique Clar formula, class 1CF: (a) ac(11) ribbon with width index w ) 22; (b) ac(22) ribbon with width index w
) 21; (c) zz(211)-interlock ribbon with w ) 13. Subfigures show (from left to right) bond lengths, hexagon areas, Clar formulas, negative bias STM images,
and positive bias STM images. The scales of the bond lengths and hexagon areas show the deviations from the values of ideal graphene, 1.427 Å and 5.293
Å2, respectively, in percent. All scales are valid throughout this section.
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the formation of a Clar sextet. Hence, these bonds appear bright
in positive bias STM images.

2. Subclass 2CF: Two Equivalent Clar Formulas. The ac(11)
ribbons with a width index of w ) (3n + 2), n being an integer,
the ac(22) ribbons with widths of w ) (3n + 1), and all zz(211)
ribbons have two equivalent Clar formulas and thus constitute
the subclass 2CF. The two Clar formulas of these structures
are always connected via symmetry operations (see Figure 7).

a. Bond Lengths. The subclass 2CF structures are comple-
mentary to the subclass 1CF structures. The superposition of
the two equivalent Clar formulas results in a (�3 × �3)R30°
pattern of hexagons which in neither of the two possible Clar
formulas are Clar sextets. As a consequence, the sides of these
non-Clar hexagons have a net bond order of 5/4 and therefore
are longer than the bonds sticking out of them (bond order 3/2).
The atomic coordinates from DFT calculations second this
reasoning, as illustrated in the first subfigures in Figure 7. All
ribbons of this subclass show a (�3 × �3)R30° pattern in
which hexagons with longer sides (blue) are surrounded by a
crown of slightly shorter bonds sticking out of them (dark red/
black).

b. Hexagon Areas. The bond orders implied by the two Clar
formulas of the subclass 2CF structures also mean that the area
of the hexagons which do not house a Clar sextet in either Clar
formula (six sides with bond order 5/4) should be larger than
the area of the surrounding hexagons that are a Clar sextet in
one of the two formulas (three sides with bond order 5/4 and

three with bond order 3/2). The DFT coordinates are in agreement
with this, as shown in the second subfigures in Figure 7. In a
(�3 × �3)R30° pattern, the non-Clar hexagons appear in dark
gray, corresponding to a larger area, and are surrounded by the
smaller hexagons, in light gray, which are Clar sextets in one
of the two possible Clar formulas.

c. Simulated STM Images. As the π electrons of the carbon
atoms forming a non-Clar hexagon are in both Clar formulas
engaged in forming a Clar sextet in one of the adjacent
hexagons, never in the non-Clar hexagon itself, the local density
of occupied π states in these non-Clar hexagons should be
expected to be lower than those of the neighboring hexagons.
This interpretation is in very good agreement with the pattern
of dark spots in simulated STM images with negative bias. These
dark areas are located at the positions of the non-Clar hexagons
(see the fifth subfigures in Figure 7). The bright contributions
reflect the higher density of occupied π states in the bonds
sticking out of the non-Clar hexagons. In positive bias STM
images, on the other hand, bright rings located at the non-Clar
hexagons reflect the high density of unoccupied π states in the
corresponding region, again in perfect agreement with what one
would expect from the Clar formulas. Note that the STM images
with a given bias sign of class 2CF structures resemble very
much the images with opposite sign bias of class 1CF structures.
Therefore, changing between the classes 1CF and 2CF has the
same effect as staying in one class but changing the sign of the
bias voltage.

Figure 7. Graphene ribbons with two equivalent Clar formulas, class 2CF: (a) ac(11) ribbon with width index w ) 20; (b) ac(22) ribbon with width index
w ) 22; (c) zz(211) ribbon with w ) 13. The dashed circles in the lattice on the STM images illustrate the superposition of the two Clar formulas.
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3. Subclass nCF: More Than Two Clar Formulas. The
armchair ribbons not discussed so far, ac(11) with w ) 3n, n
being an integer, and ac(22) with w ) (3n + 2) belong to the
subclass nCF, meaning that they have more than two equivalent
Clar representations maximizing the number of Clar sextets.
The Clar formulas of class nCF structures are not necessarily
connected by symmetry operations among each other, as one
can see in Figure 8. Note that not all possible Clar formulas
are shown for reasons of space.

a. Bond Lengths. Except for the hexagons at the very edges
of the ac(22) ribbons, all hexagons in the depicted examples
become a Clar sextet in one or more of the possible Clar
formulas. The π electrons that are not part of a Clar sextet can
either form horizontal double bonds parallel to the edges of the
ribbons or double bonds in the lateral direction. When we have
a closer look at the Clar formulas, we notice, however, that
every third horizontal bond cannot be a double bond in a Clar
representation with a maximum number of Clar sextets (see the
last Clar representations to the very right, in red, in Figure 8).
If we consider a Clar representation in which such a bond is a
double bond, the number of Clar sextets is necessarily lower
than maximally possible. This leads to a slightly lower bond
order of every third horizontal bond parallel to the edges of the
ribbons. The DFT coordinates, however, indicate that in the
superposition of all the many possible Clar formulas, this effect
is of minor importance compared to the anomalous forces acting

on the edge atoms. The first subfigures of Figure 8 show that
the effects of the different Clar formulas have canceled out.
Significant bond length alternations appear only at the very
edges. In the interior of the ribbons, the bonds approach the
graphene limit very quickly and bond length alternations
disappear.

b. Hexagon Areas. Also, the effect a single Clar formula
might have on the hexagon areas is evened out in the
superposition of the many possible Clar formulas. The DFT
coordinates show an analogous picture, as depicted in the second
subfigures in Figure 8. Significant area alternations appear only
at the edges and can be attributed to changed effective forces
on the edge atoms. In the interior of the ribbons, the hexagon
areas attain a uniform limit. This is in contrast to the class 1CF
and 2CF cases, where patterns of hexagons with alternating areas
run through the whole width of the ribbons.

c. Simulated STM Images. Interestingly, the simulated STM
images in Figure 8 do not show a uniform, evened-out signal,
as one might expect form the superposition of all possible Clar
formulas. Instead, the negative bias STM images accentuate a
pattern with two out of three horizontal double bonds appearing
bright and one appearing dark. The horizontal bonds appearing
dark at negative bias correspond to bonds that cannot be double
bonds in a Clar representation with a maximum number of Clar
sextets, as pointed out before. Therefore, the bond order
inhomogeneity among the horizontal bonds, implicated by the

Figure 8. Graphene ribbons with more than two equivalent Clar formulas, subclass nCF: (a) ac(11) ribbon with width index w ) 21; (b) ac(22) ribbon with
w ) 20. In the negative bias STM images, every third horizontal bond remains dark. These bonds cannot be double bonds in a Clar formula with a maximum
number of Clar sextets. See the Clar representations to the right in red and the bonds indicated with arrows. The red configurations feature only six Clar
sextets in (a) and five in (b), which is one less than in the other Clar formulas of the corresponding ribbons.
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Clar formulas for this subclass, has no remarkable influence on
the geometry but the alternating π-electron content of the
corresponding bonds still appears in simulated STM images.

(c) Nonbenzenoid Ribbons. Among the configurations con-
sidered in this study, the zz(1) and zz(2) ribbons make up the
class of nonbenzenoid ribbons.

1. Clar Formulas. Under the premise that all four valence
electrons of each carbon atom are engaged in bonds with
neighboring atoms and no free radicals or dangling bonds are
present, the formation of Clar sextets in the Clar representation
of a zz(2) ribbon is completely suppressed. Instead, all bonds
in the lateral direction of the ribbon are forced to be double
bonds (third subfigure in Figure 11b). Obviously, in this case
the number of double bonds in the Clar formula of the unit cell
increases with the width of the ribbon. Such structures, in which
all hexagons have two double bonds, are called fully quinoidal63

(or quinonoid65).
In the case of the zz(1) ribbons, the formation of Clar sextets

is not forbidden in a strict sense. In a limited region of the
infinitely long ribbon, Clar sextets can still form, as illustrated
in Figure 9a.46 The Clar sextets, however, break the periodicity
of the ribbon and there are infinitely many positions where they
may be placed on the infinitely long ribbon. The superposition
of these (infinitely many) Clar representations with limited
numbers of Clar sextets is equivalent to the superposition of
two fully quinoidal structures of the kind depicted in Figure 9b
and Figure 11a. Note that, in the quinoidal bond formulas, the
bonds in the lateral direction of the ribbon are single bonds
and double bonds are concentrated in the zigzag direction along
the ribbon.

By introducing radicals, i.e., unpaired electrons or holes, in
the Clar representations, a (pseudo)-all-benzenoid π-electron
distribution in the interior of the ribbons can be re-established
for both nonbenzenoid configurations (Figure 10).47,51 Obvi-
ously, for ribbons that are wide enough, the gain in resonance
energy favors this alternative (pseudo)-all-benzenoid bond
configuration. As the radicals represent uncompensated spin
moments, the alternative Clar models also account for the spin
polarized edge states found in DFT calculations on these kind
of ribbons.21-23 Interestingly, they hold even quantitatively: the
Clar formulas depicted in Figure 10 show one radical per edge
and per supercell for the zz(1) ribbon and two radicals for the
zz(2) ribbon. Hence, they imply a net spin moment of (1/3 µB

per edge and per primitive unit cell for the zz(1) ribbon and
one of (2/3 µB for zz(2). Integration of the DFT spin polariza-
tion, F(up) - F(down), where F(up) and F(down) denote the
spin-resolved electron densities, over half of the ribbon revealed

a net spin moment of (0.30 µB on each side in the zz(1)
configuration and of (0.63 µB in zz(2). The underestimation
of the expected values by the DFT results may be seen as an
indication that the real (DFT) configuration is a mix of the fully
quinoidal configuration of Figure 11 and the alternative (pseudo)-
all-benzenoid configuration of Figure 10.

The existence of unpaired electrons and holes at the edges
of zz(1) ribbons is also in agreement with the results of an
investigation of the electronic ground state of higher acenes.66,67

There it was revealed that the ground state of acenes consisting
of more than six fused benzene rings is an open-shell singlet
state with antiferromagnetic order between the zigzag edges. It
is not likely that this state is a diradical, since the net spin
moment on the edges increases with the size of the acene.

2. Bond Lengths. The superposition of the alternative (pseudo)-
all-benzenoid Clar formulas of Figure 10 results in a complete
equalization of the bond orders in the interior of the ribbons
and thus the implied π-electron distribution should lead to a
uniform bond length throughout the ribbons. In contrast to that,
the DFT coordinates show a clear anisotropy of the bond lengths,
as illustrated in the first subfigures in Figure 11. The zz(1)
configuration exhibits significantly shorter bonds along the
zigzag direction and longer bonds in the lateral direction of the
ribbon, whereas the zz(2) configuration shows short bonds in
the lateral direction and long bonds in the zigzag direction. This
distribution of the bond lengths, however, is in perfect agreement
with the localization of the double bonds in the fully quinoidal
Clar representations depicted in Figure 11, and it might be seen
as another indication that the true DFT state is a mix of the
fully quinoidal and the alternative (pseudo)-all-benzenoid
configurations.

3. Hexagon Areas. For the hexagon areas, the fully quinoidal
and the alternative (pseudo)-all-benzenoid Clar representations
make no difference. In both models, all hexagons in the interior
of the ribbons have the same bond configuration and therefore
are expected to be of the same size. This is in agreement with
the DFT results presented in the second subfigures in Figure
11. Note, however, that as four out of the six bonds constituting
a hexagon in the zz(2) ribbon are clearly longer than in ideal
graphene, these hexagons are considerably larger than those in
graphene.

4. Simulated STM Images. The alternative (pseudo)-all-
benzenoid Clar representations imply a magnetic state localized
at the edges of both zz(1) and zz(2) ribbons. Apart from that,
however, they predict a uniform distribution of the π electrons
in the interior of the ribbons. For the zz(1) configuration, the
fully quinoidal Clar representations, on the other hand, hint at
a high density of occupied states in the zigzag bonds along the
direction of the ribbon and a low density of occupied states in
the bonds in the lateral direction.

In fact, the most dominant feature in the simulated STM
images of both ribbons in Figure 11 is the signature of the edge
state that decays toward the interior of the ribbons. In addition
to that, in the interior of the zz(1) ribbon, where the edge state
has decayed, the negative bias STM image highlights horizontal
structures corresponding to the double bonds in the zigzag
direction along the ribbon. Complementary to that and in
agreement with the fully quinoidal Clar representation, at
positive bias, a high density of empty electronic states in the

(65) Kertesz, M.; Choi, C. H.; Yang, S. Chem. ReV. 2005, 105, 3448–
3481.

(66) Bendikov, M.; Duong, H. M.; Starkey, K.; Houk, K. N.; Carter, E. A.;
Wudl, F. J. Am. Chem. Soc. 2004, 126, 7416–7417.

(67) Jiang, D.; Dai, S. J. Phys. Chem. A 2008, 112, 332–335.

Figure 9. Clar representation of a zz(1) ribbon with width index w ) 3
(a). Only a finite number of Clar sextets is allowed to form on the infinitely
long ribbon. There is no unique choice for their position. As a consequence,
the bonding is equivalently described by the superposition of two fully
quinoidal Clar formulas (b).
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Figure 11. Nonbenzenoid graphene ribbons zz(1) (a) and zz(2) (b), both with the width index w ) 13. Both configurations feature a spin polarized edge
state. In the zz(2) case, a bias voltage lower than (0.5 eV was chosen, as otherwise the edge states would dominate the image completely.

Figure 10. Alternative Clar representations for the zz(1) (a) and the zz(2) case (b). At the cost of introducing unpaired electrons (b) or holes (f) at the
edges, a (pseudo)-all-benzenoid π-electron distribution can be re-established. The periodicity l of these representations is 3 times as long as the primitive
periodicity for zigzag ribbons, lprim.
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lateral bonds is reflected by bright contributions in the corre-
sponding spots.

B. Ribbon Width Dependence. (a) Band Gap. Even though
DFT-GGA is known to underestimate the band gaps, we would
still like to include a qualitative discussion of the width
dependence of this quantity. Figure 12 shows the band gap
versus the width of the ribbons considered in this study. While
except for the smallest four zz(2) ribbons87 the band gaps of
the nonbenzenoid configurations (Figure 12a) are almost equal
and nearly independent of the width, the (pseudo)-all-benzenoid
ribbons (Figure 12b) show rich characteristics. The 3-fold periodic-
ity of the ac(11) band gap is a well-known phenomenon.13-15,68

Here we report the same kind of oscillations also for ac(22)
ribbons. One can see in Figure 12b that, among the ac(11) and
ac(22) ribbons, class 2CF structures represent band gap maxima
and class nCF structures band gap minima, whereas class 1CF
configurations have intermediate band gaps. The band gap
minima of class nCF structures coincide with the zero band gap
of two-dimensional graphene insofar as, according to our
classification scheme, two-dimensional graphene would also fall
into class nCF, as it has three equivalent Clar formulas.
Interestingly, the band gaps of the zz(211) and zz(211)-interlock
ribbons line up with the values of the other structures in their
corresponding class as well. The result is a picture in which
the band gaps are separated according to the three subclasses,
with class 1CF band gaps being enveloped by class 2CF maxima

and class nCF minima. Small band gaps can serve as indication
for higher chemical reactivity.69

(b) Edge Energy. Figure 13 shows the edge energy with
respect to hydrogen gas

as a function of the width. This quantity reflects the energy
necessary for the formation of the edges. In the above definition,
nC (nH) denotes the number of carbon (hydrogen) atoms in the
unit cell of the ribbon and Eribbon, EC, and EH2

stand for the total
DFT energies of the ribbon, one carbon atom in bulk graphene,
and an isolated hydrogen molecule, respectively.

The edge energy of the nonbenzenoid configurations zz(1)
and zz(2) increases monotonously and converges to about 85
meV/Å for zz(1) and to 215 meV/Å for zz(2) (see Figure 13a).
Also, the values for the (pseudo)-all-benzenoid zz(211) and
zz(211)-interlock ribbons converge mainly monotonously to a
common asymptotic limit of 14 meV (Figure 13b). The two
armchair configurations, ac(11) and ac(22), on the other hand,
show an oscillating convergence with a 3-fold periodicity. In
these oscillations, class nCF structures constitute maxima and
class 1CF structures minima, at least in narrow ribbons. For
broader ribbons, class 1CF and class 2CF structures have
degenerate values, but class nCF values are still slightly larger.
The asymptotic limit for the ac(11) configurations lies at about

(68) Okada, S. Phys. ReV. B 2008, 77, 041408. (69) Aihara, J. J. Phys. Chem. A 1999, 103, 7487–7495.

Figure 12. Band gap versus ribbon width for nonbenzenoid ribbons (a)
and (pseudo)-all-benzenoid ribbons (b). The (pseudo)-all-benzenoid con-
figurations are color-coded according to the subclass they belong to (see
text).

Figure 13. Edge energy versus ribbon width for nonbenzenoid ribbons
(a) and (pseudo)-all-benzenoid ribbons (b). The (pseudo)-all-benzenoid
configurations are color-coded according to the subclass they belong to (see
text).
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33 meV/Å and that for the ac(22) configurations at -72 meV/
Å. Other studies discussing the edge energy oscillations of
single-hydrogen-terminated or undecorated armchair ribbons
include refs 68 and 70.

For the ac(22) ribbons, separate calculations in the ac(22)-
mirror and ac(22)-inversion configuration (see Figure 1) have
been performed. The configuration with mirror symmetry
exhibits a total energy lower than that with inversion symmetry
for the width indices w ) 1, 6, 7, 8. In the other cases with w
< 10, the ac(22)-inversion configuration is favored. For ribbons
with w g 10, i.e., ribbons with a width of at least 15.4 Å, the
two configurations are energetically equivalent.

(c) Edge Strain. The edge-induced strain describes the
variation of the equilibrium lattice length of the ribbons with
respect to that of two-dimensional graphene. For ideal graphene,
the lattice constant found with our computational setup amounts
to 2.47 Å, which compares well to the experimental lattice
constant of graphite, 2.46 Å.71 Figure 14 shows this parameter
as a function of the ribbon width. With increasing width, the

lattice length of all ribbons converges to that of two-dimensional
graphene. Except for the zz(1) case, the value of all configura-
tions converges from above. The edge strain of the (pseudo)-
all-benzenoid ribbons ac(11), zz(211), zz(211)-interlock, and
ac(22) lies between the extrema represented by the two
nonbenzenoid configurations zz(1) and zz(2). This is in agree-
ment with the fully quinoidal Clar formulas and the bond length
analysis in Figure 11. There we found a preference for double
bonds along the periodic zigzag direction for zz(1) ribbons, and
hence we would expect the lattice length in this direction to be
smaller than in two-dimensional graphene. In the zz(2) con-
figurations, on the other hand, the bonds along the periodic
zigzag direction are forced to be single bonds in the radical-
free Clar formula, making them longer than in graphene. In
addition, the repulsion between the edge hydrogen atoms also
acts in this direction, leading to an enlarged lattice length.
Interestingly, the edge strain of the armchair configurations again
shows a small oscillation with a periodicity of 3, in line with
the alternation between the three (pseudo)-all-benzenoid sub-
classes, as shown in Figure 14b. Maxima correspond to class
1CF structures and minima to class nCF configurations.

Discussion

Our simulated STM images represent an idealization, as for
instance effects of the substrate and the physics of the tip were
not considered. However, STM studies differentiating Clar
sextets form non-Clar hexagons are not bound to computer
simulations. Experimental observations were achieved in
PAHs,64,72-74 on the edges of graphite sheets,75 and even in
graphene nanoribbons (see the supporting information of ref
30).

In particular, we would like to point out that in ref 75 ring
patterns near zigzag edges were recorded at positive sample bias,
which match very well with our simulations on the zz(211)
ribbons shown in Figure 7c. Near armchair edges, the STM
patterns reported in ref 75 resemble very much our results for
subclass nCF armchair ribbons presented in Figure 8. See Figure
S1 in the Supporting Information. However, one has to be
cautious when comparing the results of ref 75 to our simulations:
in ref 75 the edges of large graphite sheets were investigated,
whereas here we considered comparably narrow graphene
ribbons whose edges still interact.

An STM image of a 10 nm width graphene ribbon claimed
to have armchair edges was presented in Figure S3 (right) in
the supporting information of ref 30. This image, recorded at
U ) 0.2 V, shows in some parts a pattern of bright rings that
compares very nicely to our simulations of the zz(211) ribbon
at positive bias (Figure 7c), indicating that the observed ribbon
probably runs in zigzag direction. See Figure S2 in the
Supporting Information.

Despite these encouraging experimental results, an atomically
resolved STM characterization of smooth-edged graphene
nanoribbons still remains to be achieved. In our simulations we
showed that the edges dominate the STM patterns far into the
interior of the ribbons. These patterns can give valuable

(70) Kawai, T.; Miyamoto, Y.; Sugino, O.; Koga, Y. Phys. ReV. B 2000,
62, R16349–R16352.

(71) Trucano, P.; Chen, R. Nature 1975, 258, 136–137.

(72) Ohtani, H.; Wilson, R. J.; Chiang, S.; Mate, C. M. Phys. ReV. Lett.
1988, 60, 2398.

(73) Samorı́, P.; Severin, N.; Simpson, C. D.; Müllen, K.; Rabe, J. P. J. Am.
Chem. Soc. 2002, 124, 9454–9457.

(74) Günther, C.; Karl, N.; Pflaum, J.; Strohmaier, R.; Gompf, B.;
Eisenmenger, W.; Müller, M.; Müllen, K. Langmuir 2005, 21, 656–
665.

(75) Kobayashi, Y.; Fukui, K.; Enoki, T.; Kusakabe, K. Phys. ReV. B 2006,
73, 125415.

Figure 14. Edge strain as a function of the width for all ribbons considered
in this study (a) and for the (pseudo)-all-benzenoid ribbons in detail (b).
The (pseudo)-all-benzenoid configurations are color-coded according to the
subclass they belong to (see text).
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information on the edge configuration, even if an atomic
resolution is not achieved at the very edges. Furthermore, we
remark that in STM images on multilayer graphene or graphite,
only the atoms corresponding to one of the two graphene
sublattices are visible because of the AB stacking. The (�3 ×
�3)R30° diamond and honeycomb superstructures observed in
ref 76 and 77 can partially be understood by a corresponding
sublattice modulation of our results.

In addition to STM, helpful information for the characteriza-
tion of graphene ribbons is also expected from Raman spec-
troscopy. The Raman spectrum measured in the middle of a
perfect graphene crystal features a G peak at around 1580 cm-1.
In the neighborhood of lattice defects or near the edges, STM
images indicated a (�3 × �3)R30° superstructure of the charge
density in which every third hexagon stands out.76-80 In the
supercell accounting for this reconstruction, the K phonons are
folded back to Γ and activate a D peak at around 1350 cm-1.
This D peak can be used as a signature of defects in
graphene.81-83 The phonon near K responsible for the D peak
represents a shrinking and expanding of every third hexagon,
in accordance with the (�3 × �3)R30° reconstruction of the
charge density.

In the case of graphene edges, it was claimed that only
armchair edges could induce a D-line peak, suggesting that the
presence of such a peak can be used as evidence for either
armchair edges or defects.84,85 What has not been considered
so far is the possibility of a zigzag reconstruction that induces
the same kind of charge density and geometry reconstruction
as at armchair edges or near impurities. Here we have shown
that the zz(211) and zz(211)-interlock ribbons (subclasses 1CF
and 2CF) do show such a superstructure and in addition have

a band structure that folds the K point back to Γ. They thus
should also be expected to produce a D-line peak.

Conclusions

In this article, we have demonstrated the implications Clar’s
theory of the aromatic sextet has on a set of hydrogen-terminated
graphene ribbons. Depending on whether the major portion of
the π electrons is engaged in Clar sextets or not, graphene
ribbons can be distinguished into two fundamental classes, here
called (pseudo)-all-benzenoid and nonbenzenoid. For the (pseudo)-
all-benzenoid ribbons we have proposed a further distinction
according to the number of equivalent Clar formulas they have.
This way, ribbons with similar edge-induced Clar representations
are grouped independently of their edge geometry.

An investigation of DFT-based atomic coordinates and
simulated STM images has revealed that the Clar formulas
correctly account for the π-electron distribution and geometric
aspects such as bond length and hexagon area alternations. The
ribbons in each group of the proposed classification scheme
share a common STM signature that extends far into the interior
region, reflecting the edge-induced π-electron distribution in
agreement with the corresponding Clar formulas. We have
pointed out that the presence of a Raman D-line peak alone
should not be used as an indication for armchair edges, since
there exist also zigzag reconstructions expected to activate the
corresponding phonons.

By introducing radicals at the edges of the nonbenzenoid
ribbons, a bond configuration can be restored that includes nearly
all π electrons in Clar sextets. As this alternative bond con-
figuration increases the resonance energy, at large enough
dimensions, it becomes energetically favored. The notation of
radicals at the edges is in line with the spin polarized edge states
found in DFT calculations on these ribbons. We have shown
that there is even a quantitative agreement in the net magnetiza-
tion of these alternative bond configurations and our DFT results.

Finally, we have found a correlation to our classification
scheme also in a series of calculations investigating the width
dependence of the electronic band gap, the edge energy, and
the edge-induced strain.

These findings may play an important role on the way to
experimental structure characterization. They emphasize also
that Clar’s theory is an intuitive and powerful tool covering
many aspects of sp2-bonded carbon materials such as graphene
ribbons.

Supporting Information Available: Text and figures giving
a comparison of our theoretical results with measurements
provided in refs 75 and 30 as well as complete lists of authors
for refs 33 and 53. This material is available free of charge via
the Internet at http://pubs.acs.org.
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